DS-GA 1008 - Deep Learning, Spring 2016

Assignment 1

Due: Thursday, Feb. 11th, 2016 at 4:55pm

Backpropagation

1. Warmup: Logistic regression is a pretty popular technique in machine learning to
classify data into two categories. This technique builds over linear regression by using
the same linear model but this is followed by the sigmoid function which converts
the output of the linear model to a value between 0 and 1. This value can then be
interpreted as a probability. This is usually represented as:

1
1+ e @

(1)

Py = 1|zi) = Tout = 0(Tin) =
where x;, as the name would suggest is the input scalar (which is also the output of

linear model) and o, is the output scalar.

If the error backpropagated to xoy is %Et, write the expression for 385 in terms of

OF
Oxout

2. Multinomial logistic regression is a generalization of logistic regression into multiple
classes. The softmax expression is at the crux of this technique. After receiving n
unconstrained values, the softmax expression normalizes these values to n values that
all sum to 1. This can then be perceived as probabilities attributed to the various
classes by a classifier. Your task here is to backpropagate error through this module.
The softmax expression which indicates the probability of the i-th class is as follows:

e~ B(Xin)i

P(y = Z|X1n> = (Xout)i = W (2>
k

: 3 8(Xout)i ?
What is the expression for BXn);

The variables Xj, and X, aren’t scalars but vectors. While Xj, represents the n
values input to the system, X, represents the n probabilities output from the system.
Therefore, the expression (X, ); represents the i-th element of X.

(Hint: Answer differs when ¢ = j and i # 7).



Figure 1: a DAG of modules

3. Figure 1 describes a simple network with the inputs being z; and x2 (both scalars).
Both inputs are passed through the sigmoid layer described above. Next, the outputs
from the sigmoid layers are passed through max and min layers whose outputs can be
represented as Omi, = min(iy, iz) and ogmay, = max(iy, i2). The values output by the min
and max layers are then summed in the final layer.

Suppose the error passed down (backpropagated) to y is %—5. Write the values for g—g
and g—i in terms of %—5.

2 Torch (MNIST Handwritten Digit Recognition)

For this problem, you will need to run and understand the sample code located at https:
//github.com/yjxiao/ds-ga-1008-al. The sample code is based on Clement Farabet’s
tutorial on supervised learning http://code.madbits.com/wiki/doku.php?id=tutorial_
supervised. The difference is that we are using MNIST instead of SVHN. It is recommended
that you walk through the tutorial in an itorch notebook.

You can clone and run the code on CIMS (use https://www.cims.nyu.edu/webapps/
content/systems/userservices/accounts/obtain if you don’t have a CIMS account) as
follows:

you@crunchyl [Documents]$ git clone GIT_REPO_GIVEN_ABOVE
you@crunchyl [Documents]$ module load torch
you@crunchyl [Documents]$ cd ds-ga-1008-al
you@crunchyl[ds-ga-1008-a1]$ th doall.lua

You need to save the predictions and submit them to the Kaggle competition. Once
you have understood the starter code, try to improve the model and beat the competi-
tion. After you finalize your model, create a script result.lua, that generates a file named


https://github.com/yjxiao/ds-ga-1008-a1
https://github.com/yjxiao/ds-ga-1008-a1
http://code. madbits.com/wiki/doku.php?id=tutorial_supervised
http://code. madbits.com/wiki/doku.php?id=tutorial_supervised
https://www.cims.nyu.edu/webapps/content/systems/userservices/accounts/obtain
https://www.cims.nyu.edu/webapps/content/systems/userservices/accounts/obtain

predictions.csv. We will check that predictions.csv matches your final Kaggle submis-
sion. You will need to save your trained model as well to be able to generate the predictions
via result.lua. The function torch.save() in the starter code does exactly this.

DO NOT submit your trained model file (the binary generated by torch during training)
via email. Instead expose the file through CIMS. These files are generally huge. Use http://
cims.nyu.edu/webapps/content/systems/userservices/webhosting for information on
how to host on CIMS servers. Make sure you set the right permissions.

DO NOT train on the test data. Training on the test data is considered plagiarism.
Note that the sample code does not use a validation set which we recommend you implement
by yourselves.

Evaluation
Your grade for this section will be based on

e 30% - Kaggle performance. Full score as long as you beat the benchmark.

e 40% - Writeup on your model structure, training process, experiments, results, etc.
We expect a rather formal report written with ETEX.

e 30% - Simple, readable, commented code of final submitted script result.lua that
is able to execute on the test data and generate a prediction file consistent with your
final Kaggle submission.

Submission

Send your submission (writeup and result.lua) to your corresponding TA by the deadline.
Merge your solutions to section 1 with the writeup from section 2. Include a link to the
trained model file in the email. Please use the following title for your email.

[DS-GA-1008 YOUR_TEAM_NAME] Submission Al

If you are still forming a team, please introduce your team by sending an email to Jake

j.zhao@nyu.edu with the following subject line and specify the team name, team members,
and their NetIDs.

[DS-GA-1008 YOUR_TEAM_NAME]

We will be sending out Kaggle invitations as soon as you form a team. Please compete
as teams on Kaggle with exactly the same team names.


http://cims.nyu.edu/webapps/content/systems/userservices/webhosting
http://cims.nyu.edu/webapps/content/systems/userservices/webhosting

	Backpropagation
	Torch (MNIST Handwritten Digit Recognition)

