
Recurrent Neural Networks
(Part - 2)

Sumit Chopra
Facebook

Recap
Standard RNNs

Training: Backpropagation Through Time (BPTT)

Application to sequence modeling

Language modeling

Applications: Automatic speech recognition, Machine
translation

Main problems in training

Major Shortcomings

Handling of complex non-linear interactions

DifÞculties using BPTT to capture long-term dependencies

Exploding gradients

Vanishing gradients

Handling Non-Linear
Interactions

Towards End-to-End Speech Recognition with Recurrent Neural Networks

Figure 1.Long Short-term Memory Cell.

Figure 2.Bidirectional Recurrent Neural Network.

do this by processing the data in both directions with two
separate hidden layers, which are then fed forwards to the
same output layer. As illustrated in Fig. 2, a BRNN com-
putes the forward hidden sequence

!"
h , the backwardhid-

den sequence
#!
h and the output sequence y by iterating the

backward layer from t = T to 1, the forward layer from
t = 1 to T and then updating the output layer:

!"
h t = H

!
W

x
!"
h

xt + W!"
h

!"
h

!"
h t ! 1 + b!"

h

"
(8)

#!
h t = H

!
W

x
#!
h

xt + W#!
h

#!
h

#!
h t +1 + b#!

h

"
(9)

yt = W!"
h y

!"
h t + W#!

h y

#!
h t + bo (10)

Combing BRNNs with LSTM gives bidirectional
LSTM (Graves & Schmidhuber, 2005), which can
access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deeparchitectures, which are able to build up
progressively higher level representations of acoustic data.
Deep RNNscan be created by stacking multiple RNN hid-
den layers on top of each other, with the output sequence of
one layer forming the input sequence for the next, as shown
in Fig. 3. Assuming the same hidden layer function is used

Figure 3.Deep Recurrent Neural Network.

for all N layers in the stack, the hidden vector sequences
hn are iteratively computed from n = 1 to N and t = 1 to
T :

hn
t = H

#
Whn �1 hn hn ! 1

t + Whn hn hn
t ! 1 + bn

h

$
(11)

where h0 = x . The network outputs yt are

yt = WhN y hN
t + bo (12)

Deep bidirectional RNNs can be implemented by replacing
each hidden sequence hn with the forward and backward
sequences

!"
h n and

#!
h n , and ensuring that every hidden

layer receives input from both the forward and backward
layers at the level below. If LSTM is used for the hidden
layers the complete architecture is referred to as deep bidi-
rectional LSTM (Graves et al., 2013).

3. Connectionist Temporal ClassiÞcation

Neural networks (whether feedforward or recurrent) are
typically trained as frame-level classifiers in speech recog-
nition. This requires a separate training target for ev-
ery frame, which in turn requires the alignment between
the audio and transcription sequences to be determined by
the HMM. However the alignment is only reliable once
the classifier is trained, leading to a circular dependency
between segmentation and recognition (known as Sayre’s
paradox in the closely-related field of handwriting recog-
nition). Furthermore, the alignments are irrelevant to most
speech recognition tasks, where only the word-level tran-
scriptions matter. Connectionist Temporal Classification
(CTC) (Graves, 2012, Chapter 7) is an objective function
that allows an RNN to be trained for sequence transcrip-
tion tasks without requiring any prior alignment between
the input and target sequences.

have depth not only in
temporal dimension

but also in space (at each
time step)

empirically shown to provide
signiÞcant improvement in

tasks like ASR, Un-
supervised training using

videos

Handling Non-Linear
Interactions

Gated RNNs

shown to work on character
based language modeling

Handling Non-Linear
Interactions

Sutskever et.al., 2011:Generating Test with Recurrent Networks

Generating Text with Recurrent Neural Networks

for t = 1 to T:

ht = tanh(Whx xt + Whh ht ! 1 + bh) (1)

ot = Woh ht + bo (2)

In these equations,Whx is the input-to-hidden weight ma-
trix, Whh is the hidden-to-hidden (or recurrent) weight ma-
trix, Woh is the hidden-to-output weight matrix, and the
vectorsbh and bo are the biases. The undeÞned expres-
sionWhh ht ! 1 at timet = 1 is replaced with a special ini-
tial bias vector,hinit , and thetanh nonlinearity is applied
coordinate-wise.

The gradients of the RNN are easy to compute via back-
propagation through time (Rumelhart et al., 1986; Werbos,
1990)1, so it may seem that RNNs are easy to train with
gradient descent. In reality, the relationship between the
parameters and the dynamics of the RNN is highly unsta-
ble which makes gradient descent ineffective. This intu-
ition was formalized byHochreiter(1991) andBengio et al.
(1994) who proved that the gradient decays (or, less fre-
quently, blows up) exponentially as it is backpropagated
through time, and used this result to argue that RNNs can-
not learn long-range temporal dependencies when gradi-
ent descent is used for training. In addition, the occasional
tendency of the backpropagated gradient to exponentially
blow-up greatly increases the variance of the gradients and
makes learning very unstable. As gradient descent was the
main algorithm used for training neural networks at the
time, these theoretical results and the empirical difÞculty
of training RNNs led to the near abandonment of RNN re-
search.

One way to deal with the inability of gradient descent to
learn long-range temporal structure in a standard RNN is
to modify the model to include ÒmemoryÓ units that are
specially designed to store information over long time pe-
riods. This approach is known as ÒLong-Short Term Mem-
oryÓ (Hochreiter & Schmidhuber, 1997) and has been suc-
cessfully applied to complex real-world sequence mod-
eling tasks (e.g.,Graves & Schmidhuber, 2009). Long-
Short Term Memory makes it possible to handle datasets
which require long-term memorization and recall but even
on these datasets it is outperformed by using a standard
RNN trained with the HF optimizer (Martens & Sutskever,
2011).

Another way to avoid the problems associated with back-
propagation through time is the Echo State Network (Jaeger
& Haas, 2004) which forgoes learning the recurrent con-
nections altogether and only trains the non-recurrent out-
put weights. This is a much easier learning task and it
works surprisingly well provided the recurrent connections

1In contrast, Dynamic Bayes Networks (Murphy, 2002), the
probabilistic analogues of RNNs, do not have an efÞcient algo-
rithm for computing their gradients.

Figure 2.An illustration of the signiÞcance of the multiplicative
connections (the product is depicted by a triangle). The presence
of the multiplicative connections enables the RNN to be sensitive
to conjunctions of context and character, allowing different con-
texts to respond in a qualitatively different manner to the same
input character.

are carefully initialized so that the intrinsic dynamics of the
network exhibits a rich reservoir of temporal behaviours
that can be selectively coupled to the output.

3. The Multiplicative RNN

Having applied a modestly-sized standard RNN archi-
tecture to the character-level language modeling problem
(where the target output at each time step is deÞned as the
the input character at the next time-step), we found the
performance somewhat unsatisfactory, and that while in-
creasing the dimensionality of the hidden state did help,
the per-parameter gain in test performance was not sufÞ-
cient to allow the method to be both practical and com-
petitive with state-of-the-art approaches. We address this
problem by proposing a new temporal architecture called
the Multiplicative RNN (MRNN) which we will argue is
better suited to the language modeling task.

3.1. The Tensor RNN

The dynamics of the RNNÕs hidden states depend on the
hidden-to-hidden matrix and on the inputs. In a standard
RNN (as deÞned by eqs.1-2), the current inputxt is Þrst
transformed via the visible-to-hidden weight matrixWhx

and then contributes additively to the input for the current
hidden state. A more powerful way for the current input
character to affect the hidden state dynamics would be to
determine the entire hidden-to-hidden matrix (which de-
Þnes the non-linear dynamics) in addition to providing an
additive bias.

One motivation for this approach came from viewing an
RNN as a model of an unbounded tree in which each node
is a hidden state vector and each edge is labelled by a char-
acter that determines how the parent node gives rise to the
child node. This view emphasizes the resemblance of an
RNN to a Markov model that stores familiar strings of char-
acters in a tree, and it also makes it clear that the RNN tree
is potentially much more powerful than the Markov model
because the distributed representation of a node allows dif-

Generating Text with Recurrent Neural Networks

ferent nodes to share knowledge. For example, the charac-
ter string ÒingÓ is quite probable after ÒÞxÓ and also quite
probable after ÒbreakÓ. If the hidden state vectors that rep-
resent the two histories ÒÞxÓ and ÒbreakÓ share a common
representation of the fact that this could be the stem of a
verb, then this common representation can be acted upon
by the character ÒiÓ to produce a hidden state that predicts
an ÒnÓ. For this to be a good prediction we require the
conjunctionof the verb-stem representation in the previous
hidden state and the character ÒiÓ. One or other of these
alone does not provide half as much evidence for predict-
ing an ÒnÓ: It is their conjunction that is important. This
strongly suggests that we need a multiplicative interaction.
To achieve this goal we modify the RNN so that its hidden-
to-hidden weight matrix is a (learned) function of the cur-
rent inputx

t

:

h
t

= tanh
!

W
hx

x
t

+ W (xt)
hh

h
t! 1 + b

h

"
(3)

o
t

= W
oh

h
t

+ b
o

(4)

These are identical to eqs.1 and2, except thatW
hh

is re-
placed withW (xt)

hh

, allowing each character to specify a
different hidden-to-hidden weight matrix.

It is natural to deÞneW (xt)
hh

using a tensor. If we store

M matrices,W (1)
hh

, . . . , W (M)
hh

, whereM is the number of

dimensions ofx
t

, we could deÞneW (xt)
hh

by the equation

W (xt)
hh

=
M#

m=1

x(m)
t

W (m)
hh

(5)

wherex(m)
t

is them-th coordinate ofx
t

. When the input
x
t

is a 1-of-M encoding of a character, it is easily seen that
every character has an associated weight matrix andW (xt)

hh

is the matrix assigned to the character represented byx
t

. 2

3.2. The Multiplicative RNN

The above scheme, while appealing, has a major drawback:
Fully general 3-way tensors are not practical because of
their size. In particular, if we want to use RNNs with a
large number of hidden units (say, 1000) and if the dimen-
sionality of x

t

is even moderately large, then the storage
required for the tensorW (xt)

hh

becomes prohibitive.

It turns out we can remedy the above problem by factoring
the tensorW (x)

hh

(e.g.,Taylor & Hinton, 2009). This is done
by introducing the three matricesW

fx

, W
hf

, andW
fh

, and
reparameterizing the matrixW (xt)

hh

by the equation

W (xt)
hh

= W
hf

ádiag(W
fx

x
t

) áW
fh

(6)

2The above model, applied to discrete inputs represented with
their 1-of-M encodings, is the nonlinear version of the Observ-
able Operator Model (OOM;Jaeger, 2000) whose linear nature
makes it closely related to an HMM in terms of expressive power.

Figure 3.The Multiplicative Recurrent Neural Network ÒgatesÓ
the recurrent weight matrix with the input symbol. Each triangle
symbol represents a factor that applies a learned linear Þlter at
each of its two input vertices. The product of the outputs of these
two linear Þlters is then sent, via weighted connections, to all the
units connected to the third vertex of the triangle. Consequently
every input can synthesize its own hidden-to-hidden weight ma-
trix by determining the gains on all of the factors, each of which
represents a rank one hidden-to-hidden weight matrix deÞned by
the outer-product of its incoming and outgoing weight-vectors to
the hidden units. The synthesized weight matrices share Òstruc-
tureÓ because they are all formed by blending the same set of rank
one matrices. In contrast, an unconstrained tensor model ensures
that each input has a completely separate weight matrix.

If the dimensionality of the vectorW
fx

x
t

, denoted byF ,
is sufÞciently large, then the factorization is as expressive
as the original tensor. Smaller values ofF require fewer
parameters while hopefully retaining a signiÞcant fraction
of the tensorÕs expressive power.

The Multiplicative RNN (MRNN) is the result of factoriz-
ing the Tensor RNN by expanding eq.6 within eq.3. The
MRNN computes the hidden state sequence(h1, . . . , h

T

),
an additional Òfactor state sequenceÓ(f 1, . . . , f

T

), and the
output sequence(o1, . . . , o

T

) by iterating the equations

f
t

= diag(W
fx

x
t

) áW
fh

h
t! 1 (7)

h
t

= tanh(W
hf

f
t

+ W
hx

x
t

) (8)

o
t

= W
oh

h
t

+ b
o

(9)

which implement the neural network in Þg.3. The tensor
factorization of eq.6 has the interpretation of an additional
layer of multiplicative units between each pair of consec-
utive layers (i.e., the triangles in Þg.3), so the MRNN ac-
tually has two steps of nonlinear processing in its hidden
states for every input timestep. Each of the multiplicative
units outputs the valuef

t

of eq.7 which is the product of
the outputs of the two linear Þlters connecting the multi-
plicative unit to the previous hidden states and to the inputs.

We experimentally veriÞed the advantage of the MRNN
over the RNN when the two have the same number of pa-
rameters. We trained an RNN with 500 hidden units and
an MRNN with 350 hidden units and 350 factors (so the
RNN has slightly more parameters) on the Òmachine learn-
ingÓ dataset (dataset 3 in the experimental section). After
extensive training, the MRNN achieved 1.56 bits per char-
acter and the RNN achieved 1.65 bits per character on the

• !"#$%&'(#$)"#*(+,-.".#/00#*1'(2#(,%3&-
4&567%,7&2&$',(8#9:;

• <(#7%&5$'5"=#>"#-'3'$#$)"#(*34"%#,+
*(+,-.'(2#1$"71#$,#?#– @A

• <$#'1#5,37*$&$',(&--B#3,%"#"++'5'"($#$,
7%,7&2&$"#2%&.'"($1#&+$"%#+">#$%&'('(2
"C&37-"1#D4&$5)#3,."E

F,3&1#G'6,-,H=#IJK<0:#LA@M

!"#$%&'%"(")*'+),&'-(,.)*/0

@AA

Training: Exploding Gradients

Gradient
Clipping
during
BPTT

• !"#$%&'(#$)"#*(+,-.".#/00#*1'(2#(,%3&-
4&567%,7&2&$',(8#9:;

• <(#7%&5$'5"=#>"#-'3'$#$)"#(*34"%#,+
*(+,-.'(2#1$"71#$,#?#– @A

• <$#'1#5,37*$&$',(&--B#3,%"#"++'5'"($#$,
7%,7&2&$"#2%&.'"($1#&+$"%#+">#$%&'('(2
"C&37-"1#D4&$5)#3,."E

F,3&1#G'6,-,H=#IJK<0:#LA@M

!"#$%&'%"(")*'+),&'-(,.)*/0

@AA

Training: Exploding Gradients

Gradient
Clipping
during
BPTT

Training: Vanishing Gradients

Multiple schools of thought

better initialization of the recurrent matrix and using
momentum during training

Sutskever et.al.,: On The Importance of Initialization and Momentum in
Deep Learning

modifying the architecture

Structurally Constrained
RNNs

xt

ht

yt

A

R
U

Mikolov et.al., 2015:Learning Longer Memory in Recurrent Neural Networks

Structurally Constrained
RNNs

xt

ht

yt

A

R
U

xt

ht

yt

st

U

R

A B

!

V

P

Under review as a conference paper at ICLR 2015

architecture can achieve performance similar to a full SRN when the size of the dataset and of the
hidden layer are small. This type of architecture can potentially retain information about longer term
statistics, such as the topic of a text, but it does not scale well to larger datasets (Pachitariu & Sahani,
2013). Besides, it can been argued that purely linear SRNs with learned self-recurrent weights will
perform very similarly to a combination of cache models (Kuhn & De Mori, 1990). Cache models
compute probability of the next token given a bag-of-words (unordered) representation of longer
history. They are well known to perform strongly on small datasets (Goodman, 2001b). Mikolov
& Zweig (2012) show that using such contextual features as additional inputs to the hidden layer
leads to a signiÞcant improvement in performance over the regular SRN. However in their work,
the contextual features are pre-trained using standard NLP techniques and not learned as part of the
recurrent model.

In this work, we propose a model which learns the contextual features using stochastic gradient
descent. These features are the state of a hidden layer associated with a diagonal recurrent matrix
similar to the one presented in Mozer (1993). In other words, our model possesses both a fully con-
nected recurrent matrix to produce a set of quickly changing hidden units, and a diagonal matrix that
that encourages the state of the context units to change slowly (see the detailed model in Figure 1-
b). The fast layer (calledhidden layerin the rest of this paper) can learn representations similar to
n-gram models, while the slowly changing layer (calledcontext layer) can learn topic information,
similar to cache models. More precisely, denoting byst the state of thep context units at timet, the
update rules of the model are:

st = (1 ! !)Bx t + ! st ! 1, (4)
ht = " (Pst + Ax t + Rht ! 1) , (5)
yt = f (Uht + V st) (6)

where! is a parameter in(0, 1) andP is ap " m matrix. Note that there is no nonlinearity applied
to the state of the context units. When the parameter! is Þxed, the contextual hidden units can be
seen as an exponentially decaying bag of words representation of the history. Thisexponential trace
memory(as denoted by Mozer (1993)) has been already proposed in the context of simple recurrent
networks (Jordan, 1987; Mozer, 1989). However, to the best of our knowledge, this type of memory
was never designed to learn context features used in addition to a standard hidden layer.

Alternative Model Interpretation. If we consider the context units as additional hidden units,
we can see our model as a SRN with a constrained recurrent matrixM on both hidden and context
units:

M =
!

R P
0 ! I p

"
, (7)

whereI p is the identity matrix andM is a square matrix of sizem + p, i.e., the sum of the number
of hidden and context units. This reformulation shows explicitly our structural modiÞcation of the
Elman SRN (Elman, 1990): we constrain a diagonal block of the recurrent matrix to be equal to a
reweighed identity, and keep an off-diagonal block equal to 0. For this reason, we call our model
Structurally Constrained Recurrent Network(SCRN).

Adaptive Context Features. Fixing the weight! to be constant in Eq. (4) forces the hidden units
to capture information on the same time scale. On the other hand, if we allow this weight to be
learned for each unit, we can potentially capture context from different time delays (Pachitariu &
Sahani, 2013). More precisely, we denote byQ the recurrent matrix of the contextual hidden layer,
and we consider the following update rule for the state of the contextual hidden layerst :

st = (I ! Q)Bx t + Qst ! 1, (8)

whereQ is a diagonal matrix with diagonal elements in(0, 1). We suppose that these diagonal
elements are obtained by applying a sigmoid transformation to a parameter vector#, i.e., diag(Q) =
" (#). This parametrization naturally forces the diagonal weights to stay strictly between 0 and 1.

4

Structurally Constrained
RNNsUnder review as a conference paper at ICLR 2015

Model # hidden # context Validation Perplexity Test Perplexity
Ngram - - - 141

Ngram + cache - - - 125
SRN 50 - 153 144
SRN 100 - 137 129
SRN 300 - 133 129

LSTM 50 - 129 123
LSTM 100 - 120 115
LSTM 300 - 123 119
SCRN 40 10 133 127
SCRN 90 10 124 119
SCRN 100 40 120 115
SCRN 300 40 120 115

Table 1: Results on Penn Treebank Corpus: n-gram baseline, simple recurrent nets (SRN), long
short term memory RNNs (LSTM) and structurally constrained recurrent nets (SCRN). Note that
LSTM models have 4x more parameters than SRNs for the same size of hidden layer.

3.2.1 LEARNING SELF-RECURRENTWEIGHTS.

We evaluate inßuence of learning the diagonal weights of the recurrent matrix for the contextual
layer. For the following experiments, we used a hierarchical soft-max with 100 frequency-based
classes on the Penn Treebank Corpus to speedup the experiments. In Table 2, we show that when
the size of the hidden layer is small, learning the diagonal weights is crucial. This result conÞrms
the Þndings in Pachitariu & Sahani (2013). However, as we increase the size of our model and use
sufÞcient number of hidden units, learning of the self-recurrent weights does not give any signiÞcant
improvement. This indicates that learning the weights of the contextual units allows these units to
be used as multi-scale representation of the history, i.e., some contextual units can specialize on the
very recent history (for example, for! close to0, the contextual units would be part of a simple
bigram language model). With various learned self-recurrent weights, the model can be seen as a
combination of cache and bigram models. When the number of standard hidden units is enough to
capture short term patterns, learning the self-recurrent weights does not seem crucial anymore.

Keeping this observation in mind we Þxed the diagonal weights when working with the Text8 corpus.

Model # hidden # context Fixed weights Adaptive weights
SCRN 50 0 156 156
SCRN 25 25 150 145
SCRN 0 50 344 157
SCRN 140 0 140 140
SCRN 100 40 127 127
SCRN 0 140 334 147

Table 2: Perplexity on the test set of Penn Treebank Corpus with and without learning the weights
of the contextual features. Note that in these experiments we used a hierarchical soft-max.

3.3 RESULTS ONTEXT8.

Our next experiment involves the Text8 corpus which is signiÞcantly larger than the Penn Treebank.
As this dataset contains various articles from Wikipedia, the longer term information (such as current
topic) plays bigger role than in the previous experiments. This is illustrated by the gains when cache
is added to the baseline 5-gram model: the perplexity drops from 309 to 229 (26% reduction).

We report experiments with a range of model conÞgurations, with different number of hidden units.
In Table 3, we show that increasing the capacity of standard SRNs by adding the contextual features
results in better performance. For example, when we add 40 contextual units to SRN with 100
hidden units, the perplexity drops from 245 to 189 (23% reduction). Such model is also much better
than SRN with 300 hidden units (perplexity 202).

6

Language Modeling on Penntree Bank Corpus

Structurally Constrained
RNNs

Language Modeling on Text8 Corpus
Under review as a conference paper at ICLR 2015

Model # hidden context = 0 context = 10 context = 20 context = 40 context = 80
SCRN 100 245 215 201 189 184
SCRN 300 202 182 172 165 164
SCRN 500 184 177 166 162 161

Table 3: Structurally constrained recurrent nets: perplexity for various sizes of the contextual layer,
reported on the development set of Text8 dataset.

In Table 4, we see that when the number of hidden units is small, our model is better than LSTM.
Despite the LSTM model with 100 hidden units being larger, the SCRN with 100 hidden and 80
contextual features achieves better performance. On the other hand, as the size of the models in-
crease, we see that the best LSTM model is slightly better than the best SCRN (perplexity 156 versus
161). As the perplexity gains for both LSTM and SCRN over SRN are much more signiÞcant than
in the Penn Treebank experiments, it seems likely that both models actually model the same kind of
patterns in language.

Model # hidden # context Perplexity on development set
SRN 100 - 245
SRN 300 - 202
SRN 500 - 184

LSTM 100 - 193
LSTM 300 - 159
LSTM 500 - 156
SCRN 100 80 184
SCRN 300 80 164
SCRN 500 80 161

Table 4: Comparison of various recurrent network architectures, evaluated on the development set
of Text8.

4 CONCLUSION

In this paper, we have shown that learning longer term patterns in real data using recurrent net-
works is perfectly doable using standard stochastic gradient descent, just by introducing structural
constraint on the recurrent weight matrix. The model can then be interpreted as having quickly
changing hidden layer that focuses on short term patterns, and slowly updating context layer that
retains longer term information.

Empirical comparison of SCRN to Long Short Term Memory (LSTM) recurrent networks shows
very similar behavior in two language modeling tasks, with similar gains over simple recurrent
network. This is somewhat surprising, as the LSTM structure is much more complex. We believe
these Þndings will help other researchers to better understand the problem of learning longer term
memory in sequential data. Our model greatly simpliÞes analysis and implementation of recurrent
networks that are capable of learning longer term patterns.

At the same time, it should be noted that none of the above models seems to be capable of learning
truly long term memory, which has a different nature. Instead of cycling in a state of the hidden layer,
long term information should be persistent without the need to access it at every computational step.
Further, one may need to develop mechanism that would efÞciently search through this memory and
use it efÞciently. Clearly, a lot of research needs to be done to address such problem.

REFERENCES

Bengio, Yoshua, Simard, Patrice, and Frasconi, Paolo. Learning long-term dependencies with gra-
dient descent is difÞcult.Neural Networks, IEEE Transactions on, 5(2):157Ð166, 1994.

7

recently gained a lot of popularity

have explicit memory ÒcellsÓ to store short-term activations

the presence of additional gates partly alleviates the vanishing
gradient problem

multi-layer versions shown to work quite well on tasks which
haveÒmedium termÓ dependencies

Hochreiter et.al., 1997: Long Short-Term Memory

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM)

Hochreiter et.al., 1997: Long Short-Term Memory

xt

ht

yt

A

R
U

ht ! 1

ht ! 1

ht ! 1

xt

xt

xt

it

gt

ct = ct ! 1 + gt · i t

ht = ct áot
ot

1.0 Cell

Hochreiter et.al., 1997: Long Short-Term Memory

xt

ht

yt

A

R
U

Long Short-Term Memory (LSTM)

Hochreiter et.al., 1997: Long Short-Term Memory

Long Short-Term Memory (LSTM)

ht ! 1

ht ! 1

ht ! 1

xt

xt

xt

i t

gt

ht = ct áot
ot

ht ! 1

xt
f t ct = f t áct! 1 + gt ái tCell

ht ! 1

ht ! 1

ht ! 1

xt

xt

xt

i t

gt

ht = ct áot
ot

ht ! 1

xt
f t ct = f t áct ! 1 + gt ái tCell

Hochreiter et.al., 1997: Long Short-Term Memory

Long Short-Term Memory (LSTM)

Peep-Hole
Connections

• !"#$%&'(#$)"#*(+,-.".#/00#*1'(2#(,%3&-
4&567%,7&2&$',(8#9:;

• <(#7%&5$'5"=#>"#-'3'$#$)"#(*34"%#,+
*(+,-.'(2#1$"71#$,#?#– @A

• <$#'1#5,37*$&$',(&--B#3,%"#"++'5'"($#$,
7%,7&2&$"#2%&.'"($1#&+$"%#+">#$%&'('(2
"C&37-"1#D4&$5)#3,."E

F,3&1#G'6,-,H=#IJK<0:#LA@M

!"#$%&'%"(")*'+),&'-(,.)*/0

@AA

LSTM Training

Backpropagation
Through Time: BPTT

Deep LSTMsTowards End-to-End Speech Recognition with Recurrent Neural Networks

Figure 1. Long Short-term Memory Cell.

Figure 2. Bidirectional Recurrent Neural Network.

do this by processing the data in both directions with two
separate hidden layers, which are then fed forwards to the
same output layer. As illustrated in Fig.2, a BRNN com-
putes theforward hidden sequence

!"
h , thebackwardhid-

den sequence
#!
h and the output sequencey by iterating the

backward layer fromt = T to 1, the forward layer from
t = 1 to T and then updating the output layer:

!"
h t = H

!
W

x
!"
h

xt + W!"
h

!"
h

!"
h t ! 1 + b!"

h

"
(8)

#!
h t = H

!
W

x
#!
h

xt + W#!
h

#!
h

#!
h t +1 + b#!

h

"
(9)

yt = W!"
h y

!"
h t + W#!

h y

#!
h t + bo (10)

Combing BRNNs with LSTM gives bidirectional
LSTM (Graves & Schmidhuber, 2005), which can
access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use ofdeeparchitectures, which are able to build up
progressively higher level representations of acoustic data.
Deep RNNscan be created by stacking multiple RNN hid-
den layers on top of each other, with the output sequence of
one layer forming the input sequence for the next, as shown
in Fig. 3. Assuming the same hidden layer function is used

Figure 3. Deep Recurrent Neural Network.

for all N layers in the stack, the hidden vector sequences
hn are iteratively computed fromn = 1 to N andt = 1 to
T:

hn
t = H

#
Whn ! 1 hn hn ! 1

t + Whn hn hn
t ! 1 + bn

h

$
(11)

whereh0 = x . The network outputsyt are

yt = WhN y hN
t + bo (12)

Deep bidirectional RNNs can be implemented by replacing
each hidden sequencehn with the forward and backward
sequences

!"
h n and

#!
h n , and ensuring that every hidden

layer receives input from both the forward and backward
layers at the level below. If LSTM is used for the hidden
layers the complete architecture is referred to as deep bidi-
rectional LSTM (Graves et al., 2013).

3. Connectionist Temporal ClassiÞcation

Neural networks (whether feedforward or recurrent) are
typically trained as frame-level classiÞers in speech recog-
nition. This requires a separate training target for ev-
ery frame, which in turn requires the alignment between
the audio and transcription sequences to be determined by
the HMM. However the alignment is only reliable once
the classiÞer is trained, leading to a circular dependency
between segmentation and recognition (known as SayreÕs
paradox in the closely-related Þeld of handwriting recog-
nition). Furthermore, the alignments are irrelevant to most
speech recognition tasks, where only the word-level tran-
scriptions matter. Connectionist Temporal ClassiÞcation
(CTC) (Graves, 2012, Chapter 7) is an objective function
that allows an RNN to be trained for sequence transcrip-
tion tasks without requiring any prior alignment between
the input and target sequences.

Bi-Directional LSTMs

Towards End-to-End Speech Recognition with Recurrent Neural Networks

Figure 1.Long Short-term Memory Cell.

Figure 2.Bidirectional Recurrent Neural Network.

do this by processing the data in both directions with two
separate hidden layers, which are then fed forwards to the
same output layer. As illustrated in Fig.2, a BRNN com-
putes theforward hidden sequence

!"
h , thebackwardhid-

den sequence
#!
h and the output sequencey by iterating the

backward layer fromt = T to 1, the forward layer from
t = 1 to T and then updating the output layer:

!"
h t = H

!
W

x
!"
h

xt + W!"
h

!"
h

!"
h t ! 1 + b!"

h

"
(8)

#!
h t = H

!
W

x
#!
h

xt + W#!
h

#!
h

#!
h t +1 + b#!

h

"
(9)

yt = W!"
h y

!"
h t + W#!

h y

#!
h t + bo (10)

Combing BRNNs with LSTM gives bidirectional
LSTM (Graves & Schmidhuber, 2005), which can
access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use ofdeeparchitectures, which are able to build up
progressively higher level representations of acoustic data.
Deep RNNscan be created by stacking multiple RNN hid-
den layers on top of each other, with the output sequence of
one layer forming the input sequence for the next, as shown
in Fig. 3. Assuming the same hidden layer function is used

Figure 3.Deep Recurrent Neural Network.

for all N layers in the stack, the hidden vector sequences
hn are iteratively computed fromn = 1 to N andt = 1 to
T:

hn
t = H

#
Whn ! 1 hn hn ! 1

t + Whn hn hn
t ! 1 + bn

h

$
(11)

whereh0 = x . The network outputsyt are

yt = WhN y hN
t + bo (12)

Deep bidirectional RNNs can be implemented by replacing
each hidden sequencehn with the forward and backward
sequences

!"
h n and

#!
h n , and ensuring that every hidden

layer receives input from both the forward and backward
layers at the level below. If LSTM is used for the hidden
layers the complete architecture is referred to as deep bidi-
rectional LSTM (Graves et al., 2013).

3. Connectionist Temporal ClassiÞcation

Neural networks (whether feedforward or recurrent) are
typically trained as frame-level classiÞers in speech recog-
nition. This requires a separate training target for ev-
ery frame, which in turn requires the alignment between
the audio and transcription sequences to be determined by
the HMM. However the alignment is only reliable once
the classiÞer is trained, leading to a circular dependency
between segmentation and recognition (known as SayreÕs
paradox in the closely-related Þeld of handwriting recog-
nition). Furthermore, the alignments are irrelevant to most
speech recognition tasks, where only the word-level tran-
scriptions matter. Connectionist Temporal ClassiÞcation
(CTC) (Graves, 2012, Chapter 7) is an objective function
that allows an RNN to be trained for sequence transcrip-
tion tasks without requiring any prior alignment between
the input and target sequences.

Applications of LSTMs

Automatic Speech Recognition

Graves et. al., 2014: Speech Recognition with Deep Recurrent Neural
Networks

Towards End-to-End Speech Recognition with Recurrent Neural Networks

Figure 1.Long Short-term Memory Cell.

Figure 2.Bidirectional Recurrent Neural Network.

do this by processing the data in both directions with two
separate hidden layers, which are then fed forwards to the
same output layer. As illustrated in Fig.2, a BRNN com-
putes theforward hidden sequence

!"
h , thebackwardhid-

den sequence
#!
h and the output sequencey by iterating the

backward layer fromt = T to 1, the forward layer from
t = 1 to T and then updating the output layer:

!"
h t = H

!
W

x
!"
h

xt + W!"
h

!"
h

!"
h t ! 1 + b!"

h

"
(8)

#!
h t = H

!
W

x
#!
h

xt + W#!
h

#!
h

#!
h t +1 + b#!

h

"
(9)

yt = W!"
h y

!"
h t + W#!

h y

#!
h t + bo (10)

Combing BRNNs with LSTM gives bidirectional
LSTM (Graves & Schmidhuber, 2005), which can
access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use ofdeeparchitectures, which are able to build up
progressively higher level representations of acoustic data.
Deep RNNscan be created by stacking multiple RNN hid-
den layers on top of each other, with the output sequence of
one layer forming the input sequence for the next, as shown
in Fig. 3. Assuming the same hidden layer function is used

Figure 3.Deep Recurrent Neural Network.

for all N layers in the stack, the hidden vector sequences
hn are iteratively computed fromn = 1 to N andt = 1 to
T:

hn
t = H

#
Whn ! 1 hn hn ! 1

t + Whn hn hn
t ! 1 + bn

h

$
(11)

whereh0 = x . The network outputsyt are

yt = WhN y hN
t + bo (12)

Deep bidirectional RNNs can be implemented by replacing
each hidden sequencehn with the forward and backward
sequences

!"
h n and

#!
h n , and ensuring that every hidden

layer receives input from both the forward and backward
layers at the level below. If LSTM is used for the hidden
layers the complete architecture is referred to as deep bidi-
rectional LSTM (Graves et al., 2013).

3. Connectionist Temporal ClassiÞcation

Neural networks (whether feedforward or recurrent) are
typically trained as frame-level classiÞers in speech recog-
nition. This requires a separate training target for ev-
ery frame, which in turn requires the alignment between
the audio and transcription sequences to be determined by
the HMM. However the alignment is only reliable once
the classiÞer is trained, leading to a circular dependency
between segmentation and recognition (known as SayreÕs
paradox in the closely-related Þeld of handwriting recog-
nition). Furthermore, the alignments are irrelevant to most
speech recognition tasks, where only the word-level tran-
scriptions matter. Connectionist Temporal ClassiÞcation
(CTC) (Graves, 2012, Chapter 7) is an objective function
that allows an RNN to be trained for sequence transcrip-
tion tasks without requiring any prior alignment between
the input and target sequences.

Use bi-directional LSTMs to represent the audio sequence

plug a classiÞer on top of the representation to directly predict
phone classes

Automatic Speech Recognition

Graves et. al., 2014: Speech Recognition with Deep Recurrent Neural
Networks

tends to ÔsimplifyÕ neural networks, in the sense of reducing
the amount of information required to transmit the parame-
ters [23, 24], which improves generalisation.

4. EXPERIMENTS

Phoneme recognition experiments were performed on the
TIMIT corpus [25]. The standard 462 speaker set with all
SA records removed was used for training, and a separate
development set of 50 speakers was used for early stop-
ping. Results are reported for the 24-speaker core test set.
The audio data was encoded using a Fourier-transform-based
Þlter-bank with 40 coefÞcients (plus energy) distributed on
a mel-scale, together with their Þrst and second temporal
derivatives. Each input vector was therefore size 123. The
data were normalised so that every element of the input vec-
tors had zero mean and unit variance over the training set. All
61 phoneme labels were used during training and decoding
(so K = 61), then mapped to 39 classes for scoring [26].
Note that all experiments were run only once, so the vari-
ance due to random weight initialisation and weight noise is
unknown.

As shown in Table 1, nine RNNs were evaluated, vary-
ing along three main dimensions: the training method used
(CTC, Transducer or pretrained Transducer), the number of
hidden levels (1Ð5), and the number of LSTM cells in each
hidden layer. Bidirectional LSTM was used for all networks
except CTC-3l-500h-tanh, which hadtanh units instead of
LSTM cells, and CTC-3l-421h-uni where the LSTM layers
were unidirectional. All networks were trained using stochas-
tic gradient descent, with learning rate10! 4, momentum0.9
and random initial weights drawn uniformly from[! 0.1, 0.1].
All networks except CTC-3l-500h-tanh and PreTrans-3l-250h
were Þrst trained with no noise and then, starting from the
point of highest log-probability on the development set, re-
trained with Gaussian weight noise (! = 0 .075) until the
point of lowest phoneme error rate on the development set.
PreTrans-3l-250h was initialised with the weights of CTC-
3l-250h, along with the weights of a phoneme prediction net-
work (which also had a hidden layer of 250 LSTM cells), both
of which were trained without noise, retrained with noise, and
stopped at the point of highest log-probability. PreTrans-3l-
250h was trained from this point with noise added. CTC-3l-
500h-tanh was entirely trained without weight noise because
it failed to learn with noise added. Beam search decoding was
used for all networks, with a beam width of 100.

The advantage of deep networks is immediately obvious,
with the error rate for CTC dropping from 23.9% to 18.4%
as the number of hidden levels increases from one to Þve.
The four networks CTC-3l-500h-tanh, CTC-1l-622h, CTC-
3l-421h-uni and CTC-3l-250h all had approximately the same
number of weights, but give radically different results. The
three main conclusions we can draw from this are (a) LSTM
works much better thantanh for this task, (b) bidirectional

Table 1. TIMIT Phoneme Recognition Results. ÔEpochsÕ is
the number of passes through the training set before conver-
gence. ÔPERÕ is the phoneme error rate on the core test set.

NETWORK WEIGHTS EPOCHS PER
CTC-3L-500H-TANH 3.7M 107 37.6%
CTC-1L-250H 0.8M 82 23.9%
CTC-1L-622H 3.8M 87 23.0%
CTC-2L-250H 2.3M 55 21.0%
CTC-3L-421H-UNI 3.8M 115 19.6%
CTC-3L-250H 3.8M 124 18.6%
CTC-5L-250H 6.8M 150 18.4%
TRANS-3L-250H 4.3M 112 18.3%
PRETRANS-3L -250H 4.3M 144 17.7%

Fig. 3. Input Sensitivity of a deep CTC RNN. The heatmap
(top) shows the derivatives of the ÔahÕ and ÔpÕ outputs printed
in red with respect to the Þlterbank inputs (bottom). The
TIMIT ground truth segmentation is shown below. Note that
the sensitivity extends to surrounding segments; this may be
because CTC (which lacks an explicit language model) at-
tempts to learn linguistic dependencies from the acoustic data.

LSTM has a slight advantage over unidirectional LSTMand
(c) depth is more important than layer size (which supports
previous Þndings for deep networks [3]). Although the advan-
tage of the transducer is slight when the weights are randomly
initialised, it becomes more substantial when pretraining is
used.

5. CONCLUSIONS AND FUTURE WORK

We have shown that the combination of deep, bidirectional
Long Short-term Memory RNNs with end-to-end training and
weight noise gives state-of-the-art results in phoneme recog-
nition on the TIMIT database. An obvious next step is to ex-
tend the system to large vocabulary speech recognition. An-
other interesting direction would be to combine frequency-
domain convolutional neural networks [27] with deep LSTM.

Sequence to Sequence Learning

sequence of words representing the answer. It is therefore clear that a domain-independent method
that learns to map sequences to sequences would be useful.

Sequences pose a challenge for DNNs because they require that the dimensionality of the inputs and
outputs is known and Þxed. In this paper, we show that a straightforward application of the Long
Short-Term Memory (LSTM) architecture [16] can solve general sequence to sequence problems.
The idea is to use one LSTM to read the input sequence, one timestep at a time, to obtain large Þxed-
dimensional vector representation, and then to use anotherLSTM to extract the output sequence
from that vector (Þg. 1). The second LSTM is essentially a recurrent neural network language model
[28, 23, 30] except that it is conditioned on the input sequence. The LSTMÕs ability to successfully
learn on data with long range temporal dependencies makes ita natural choice for this application
due to the considerable time lag between the inputs and theircorresponding outputs (Þg. 1).

There have been a number of related attempts to address the general sequence to sequence learning
problem with neural networks. Our approach is closely related to Kalchbrenner and Blunsom [18]
who were the Þrst to map the entire input sentence to vector, and is related to Cho et al. [5] although
the latter was used only for rescoring hypotheses produced by a phrase-based system. Graves [10]
introduced a novel differentiable attention mechanism that allows neural networks to focus on dif-
ferent parts of their input, and an elegant variant of this idea was successfully applied to machine
translation by Bahdanau et al. [2]. The Connectionist Sequence ClassiÞcation is another popular
technique for mapping sequences to sequences with neural networks, but it assumes a monotonic
alignment between the inputs and the outputs [11].

Figure 1: Our model reads an input sentence ÒABCÓ and produces ÒWXYZÓ as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the
input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.

The main result of this work is the following. On the WMTÕ14 English to French translation task,
we obtained a BLEU score of34.81by directly extracting translations from an ensemble of 5 deep
LSTMs (with 384M parameters and 8,000 dimensional state each) using a simple left-to-right beam-
search decoder. This is by far the best result achieved by direct translation with large neural net-
works. For comparison, the BLEU score of an SMT baseline on this dataset is 33.30 [29]. The 34.81
BLEU score was achieved by an LSTM with a vocabulary of 80k words, so the score was penalized
whenever the reference translation contained a word not covered by these 80k. This result shows
that a relatively unoptimized small-vocabulary neural network architecture which has much room
for improvement outperforms a phrase-based SMT system.

Finally, we used the LSTM to rescore the publicly available 1000-best lists of the SMT baseline on
the same task [29]. By doing so, we obtained a BLEU score of 36.5, which improves the baseline by
3.2 BLEU points and is close to the previous best published result on this task (which is 37.0 [9]).

Surprisingly, the LSTM did not suffer on very long sentences, despite the recent experience of other
researchers with related architectures [26]. We were able to do well on long sentences because we
reversed the order of words in the source sentence but not thetarget sentences in the training and test
set. By doing so, we introduced many short term dependenciesthat made the optimization problem
much simpler (see sec. 2 and 3.3). As a result, SGD could learnLSTMs that had no trouble with
long sentences. The simple trick of reversing the words in the source sentence is one of the key
technical contributions of this work.

A useful property of the LSTM is that it learns to map an input sentence of variable length into
a Þxed-dimensional vector representation. Given that translations tend to be paraphrases of the
source sentences, the translation objective encourages the LSTM to Þnd sentence representations
that capture their meaning, as sentences with similar meanings are close to each other while different

2

A B C Ñ> W X Y Z

Machine Translation

Short Text Response Generation

Sentence Summarization

Sutskever at. al., 2014: Sequence to Sequence Learning with Neural
Network

Sequence to Sequence Learning

Sutskever at. al., 2014: Sequence to Sequence Learning with Neural
Network

Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45

Baseline System [29] 33.30
Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMTÕ14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30

Cho et al. [5] 34.54
Best WMTÕ14 result [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5
Oracle Rescoring of the Baseline 1000-best lists ! 45

Table 2: Methods that use neural networks together with an SMT system on the WMTÕ14 English
to French test set (ntst14).

task by a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is
within 0.5 BLEU points of the best WMTÕ14 result if it is used torescore the 1000-best list of the
baseline system.

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantita-
tively in Þgure 3. Table 3 presents several examples of long sentences and their translations.

3.8 Model Analysis

! 8 ! 6 ! 4 ! 2 0 2 4 6 8 10
! 6

! 5

! 4

! 3

! 2

! 1

0

1

2

3

4

John respects Mary

Mary respects John
John admires Mary

Mary admires John

Mary is in love with John

John is in love with Mary

! 15 ! 10 ! 5 0 5 10 15 20
! 20

! 15

! 10

! 5

0

5

10

15

I gave her a card in the garden

In the garden , I gave her a card

She was given a card by me in the garden

She gave me a card in the garden
In the garden , she gave me a card

I was given a card by her in the garden

Figure 2: The Þgure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the Þgures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difÞcult to capture with abag-of-words model. Notice that
both clusters have similar internal structure.

One of the attractive features of our model is its ability to turn a sequence of words into a vector
of Þxed dimensionality. Figure 2 visualizes some of the learned representations. The Þgure clearly
shows that the representations are sensitive to the order ofwords, while being fairly insensitive to the

6

State-of-the-art WMTÕ14 result: 37.0

Unsupervised Training on Video

Srivastav et. al., 2014: Unsupervised Learning of Video Representation
using LSTMs

Unsupervised Learning with LSTMs

Figure 1.LSTM unit

output gateot . The LSTM unit operates as follows. At
each time step it receives inputs from two external sources
at each of the four terminals (the three gates and the input).
The Þrst source is the current framext . The second source
is the previous hidden states of all LSTM units in the same
layerht ! 1. Additionally, each gate has an internal source,
the cell statect ! 1 of its cell block. The links between a
cell and its own gates are calledpeepholeconnections. The
inputs coming from different sources get added up, along
with a bias. The gates are activated by passing their to-
tal input through the logistic function. The total input at
the input terminal is passed through the tanh non-linearity.
The resulting activation is multiplied by the activation of
the input gate. This is then added to the cell state after mul-
tiplying the cell state by the forget gateÕs activationf t . The
Þnal output from the LSTM unitht is computed by multi-
plying the output gateÕs activationot with the updated cell
state passed through a tanh non-linearity. These updates
are summarized for a layer of LSTM units as follows

i t = ! (Wxi x t + Whi ht ! 1 + Wci ct ! 1 + bi) ,

f t = ! (Wxf x t + Whf ht ! 1 + Wcf ct ! 1 + bf) ,

ct = ft ct ! 1 + i t tanh (Wxc x t + Whc ht ! 1 + bc) ,

ot = ! (Wxo x t + Who ht ! 1 + Wcoct + bo) ,

ht = ot tanh(ct).

Note that allWc¥ matrices are diagonal, whereas the rest
are dense. The key advantage of using an LSTM unit over
a traditional neuron in an RNN is that the cell state in an
LSTM unit sumsactivities over time. Since derivatives dis-
tribute over sums, the error derivatives donÕt vanish quickly
as they get sent back into time. This makes it easy to do
credit assignment over long sequences and discover long-
range features.

2.2. LSTM Autoencoder Model

In this section, we describe a model that uses Recurrent
Neural Nets (RNNs) made of LSTM units to do unsuper-

v1 v2 v3 v3 v2v3 v2

öv3 öv2 öv1Learned
Representation

W1 W1 copy W2 W2

Figure 2.LSTM Autoencoder Model

vised learning. The model consists of two RNNs Ð the en-
coder LSTM and the decoder LSTM as shown in Fig.2.
The input to the model is a sequence of vectors (image
patches or features). The encoder LSTM reads in this se-
quence. After the last input has been read, the decoder
LSTM takes over and outputs a prediction for the target se-
quence. The target sequence is same as the input sequence,
but in reverse order. Reversing the target sequence makes
the optimization easier because the model can get off the
ground by looking at low range correlations. This is also
inspired by how lists are represented in LISP. The encoder
can be seen as creating a list by applying thecons func-
tion on the previously constructed list and the new input.
The decoder essentially unrolls this list, with the hidden to
output weights extracting the element at the top of the list
(car function) and the hidden to hidden weights extract-
ing the rest of the list (cdr function). Therefore, the Þrst
element out is the last element in.

The decoder can be of two kinds Ð conditional or uncondi-
tioned. A conditional decoder receives the last generated
output frame as input, i.e., the dotted input in Fig.2 is
present. An unconditioned decoder does not receive that
input. This is discussed in more detail in Sec.2.4. Fig. 2
shows a single layer LSTM Autoencoder. The architecture
can be extend to multiple layers by stacking LSTMs on top
of each other.

Why should this learn good features?
The state of the encoder LSTM after the last input has been
read is the representation of the input video. The decoder
LSTM is being asked to reconstruct back the input se-
quence from this representation. In order to do so, the rep-
resentation must retain information about the appearance
of the objects and the background as well as the motion
contained in the video. However, an important question for
any autoencoder-style model is what prevents it from learn-
ing an identity mapping and effectively copying the input
to the output. In that case all the information about the in-
put would still be present but the representation will be no
better than the input. There are two factors that control this
behaviour. First, the fact that there are only a Þxed num-
ber of hidden units makes it unlikely that the model can

Auto-encoder Model

Unsupervised Training on Video

Srivastav et. al., 2014: Unsupervised Learning of Video Representation
using LSTMs

Future Frame Predictor Model Unsupervised Learning with LSTMs

v1 v2 v3 v4 v5

öv4 öv5 öv6Learned
Representation

W1 W1 copy W2 W2

Figure 3.LSTM Future Predictor Model

learn trivial mappings for arbitrary length input sequences.
Second, the same LSTM operation is used to decode the
representation recursively. This means that the same dy-
namics must be applied on the representation at any stage
of decoding. This further prevents the model from learning
an identity mapping.

2.3. LSTM Future Predictor Model

Another natural unsupervised learning task for sequences
is predicting the future. This is the approach used in lan-
guage models for modeling sequences of words. The de-
sign of the Future Predictor Model is same as that of the
Autoencoder Model, except that the decoder LSTM in this
case predicts frames of the video that come after the in-
put sequence (Fig.3). Ranzato et al.(2014) use a similar
model but predict only the next frame at each time step.
This model, on the other hand, predicts a long sequence
into the future. Here again we can consider two variants of
the decoder Ð conditional and unconditioned.

Why should this learn good features?
In order to predict the next few frames correctly, the model
needs information about which objects and background are
present and how they are moving so that the motion can
be extrapolated. The hidden state coming out from the en-
coder will try to capture this information. Therefore, this
state can be seen as a representation of the input sequence.

2.4. Conditional Decoder

For each of these two models, we can consider two possi-
bilities - one in which the decoder LSTM is conditioned on
the last generated frame and the other in which it is not. In
the experimental section, we explore these choices quanti-
tatively. Here we brießy discuss arguments for and against
a conditional decoder. A strong argument in favour of using
a conditional decoder is that it allows the decoder to model
multiple modes in the target sequence distribution. With-
out that, we would end up averaging the multiple modes in
the low-level input space. However, this is an issue only if
we expect multiple modes in the target sequence distribu-
tion. For the LSTM Autoencoder, there is only one correct

v1 v2 v3

v3 v2

v4 v5

öv3 öv2 öv1

öv4 öv5 öv6

Sequence of Input Frames

Future Prediction

Input Reconstruction

Learned
Representation

W1 W1

copy

copy

W2 W2

W3 W3

Figure 4.The Composite Model: The LSTM predicts the future
as well as the input sequence.

target and hence a unimodal target distribution. But for the
LSTM Future Predictor there is a possibility of multiple
targets given an input because even if we assume a deter-
ministic universe, everything needed to predict the future
will not necessarily be observed in the input.

There is also an argument against using a conditional
decoder from the optimization point-of-view. There are
strong short-range correlations in video data, for example,
most of the content of a frame is same as the previous one.
If the decoder was given access to the last few frames while
generating a particular frame at training time, it would Þnd
it easy to pick up on these correlations. There would only
be a very small gradient that tries to Þx up the extremely
subtle errors that require long term knowledge about the
input sequence. In an unconditioned decoder, this input is
removed and the model is forced to look for information
deep inside the encoder.

2.5. A Composite Model

The two tasks Ð reconstructing the input and predicting the
future can be combined to create a composite model as
shown in Fig.4. Here the encoder LSTM is asked to come
up with a state from which we canbothpredict the next few
frames as well as reconstruct the input.

This composite model tries to overcome the shortcomings
that each model suffers on its own. A high-capacity au-
toencoder would suffer from the tendency to learn trivial
representations that just memorize the inputs. However,
this memorization is not useful at all for predicting the fu-
ture. Therefore, the composite model cannot just memo-

Unsupervised Training on Video

Srivastav et. al., 2014: Unsupervised Learning of Video Representation
using LSTMs

Composite ModelUnsupervised Learning with LSTMs

v1 v2 v3 v4 v5

öv4 öv5 öv6Learned
Representation

W1 W1 copy W2 W2

Figure 3.LSTM Future Predictor Model

learn trivial mappings for arbitrary length input sequences.
Second, the same LSTM operation is used to decode the
representation recursively. This means that the same dy-
namics must be applied on the representation at any stage
of decoding. This further prevents the model from learning
an identity mapping.

2.3. LSTM Future Predictor Model

Another natural unsupervised learning task for sequences
is predicting the future. This is the approach used in lan-
guage models for modeling sequences of words. The de-
sign of the Future Predictor Model is same as that of the
Autoencoder Model, except that the decoder LSTM in this
case predicts frames of the video that come after the in-
put sequence (Fig.3). Ranzato et al.(2014) use a similar
model but predict only the next frame at each time step.
This model, on the other hand, predicts a long sequence
into the future. Here again we can consider two variants of
the decoder Ð conditional and unconditioned.

Why should this learn good features?
In order to predict the next few frames correctly, the model
needs information about which objects and background are
present and how they are moving so that the motion can
be extrapolated. The hidden state coming out from the en-
coder will try to capture this information. Therefore, this
state can be seen as a representation of the input sequence.

2.4. Conditional Decoder

For each of these two models, we can consider two possi-
bilities - one in which the decoder LSTM is conditioned on
the last generated frame and the other in which it is not. In
the experimental section, we explore these choices quanti-
tatively. Here we brießy discuss arguments for and against
a conditional decoder. A strong argument in favour of using
a conditional decoder is that it allows the decoder to model
multiple modes in the target sequence distribution. With-
out that, we would end up averaging the multiple modes in
the low-level input space. However, this is an issue only if
we expect multiple modes in the target sequence distribu-
tion. For the LSTM Autoencoder, there is only one correct

v1 v2 v3

v3 v2

v4 v5

öv3 öv2 öv1

öv4 öv5 öv6

Sequence of Input Frames

Future Prediction

Input Reconstruction

Learned
Representation

W1 W1

copy

copy

W2 W2

W3 W3

Figure 4.The Composite Model: The LSTM predicts the future
as well as the input sequence.

target and hence a unimodal target distribution. But for the
LSTM Future Predictor there is a possibility of multiple
targets given an input because even if we assume a deter-
ministic universe, everything needed to predict the future
will not necessarily be observed in the input.

There is also an argument against using a conditional
decoder from the optimization point-of-view. There are
strong short-range correlations in video data, for example,
most of the content of a frame is same as the previous one.
If the decoder was given access to the last few frames while
generating a particular frame at training time, it would Þnd
it easy to pick up on these correlations. There would only
be a very small gradient that tries to Þx up the extremely
subtle errors that require long term knowledge about the
input sequence. In an unconditioned decoder, this input is
removed and the model is forced to look for information
deep inside the encoder.

2.5. A Composite Model

The two tasks Ð reconstructing the input and predicting the
future can be combined to create a composite model as
shown in Fig.4. Here the encoder LSTM is asked to come
up with a state from which we canbothpredict the next few
frames as well as reconstruct the input.

This composite model tries to overcome the shortcomings
that each model suffers on its own. A high-capacity au-
toencoder would suffer from the tendency to learn trivial
representations that just memorize the inputs. However,
this memorization is not useful at all for predicting the fu-
ture. Therefore, the composite model cannot just memo-

Gated Recurrent Units
��

���� ��
�� ����

�����	

(a) Long Short-Term Memory (b) Gated Recurrent Unit

Figure 1: Illustration of (a) LSTM and (b) gated recurrent units. (a)i , f ando are the input, forget
and output gates, respectively.c and÷c denote the memory cell and the new memory cell content. (b)
r andz are the reset and update gates, andh and÷h are the activation and the candidate activation.

3 Gated Recurrent Neural Networks

In this paper, we are interested in evaluating the performance of those recently proposed recurrent
units (LSTM unit and GRU) on sequence modeling. Before the empirical evaluation, we Þrst de-
scribe each of those recurrent units in this section.

3.1 Long Short-Term Memory Unit

The Long Short-Term Memory (LSTM) unit was initially proposed by Hochreiter and Schmidhuber
[1997]. Since then, a number of minor modiÞcations to the original LSTM unit have been made.
We follow the implementation of LSTM as used in Graves [2013].

Unlike to the recurrent unit which simply computes a weighted sum of the input signal and applies
a nonlinear function, eachj -th LSTM unit maintains a memorycj

t at timet. The outputhj
t , or the

activation, of the LSTM unit is then

hj
t = oj

t tanh
!

cj
t

"
,

whereoj
t is anoutput gatethat modulates the amount of memory content exposure. The output gate

is computed by

oj
t = ! (Wox t + Uoht ! 1 + Voct)

j ,

where! is a logistic sigmoid function.Vo is a diagonal matrix.

The memory cellcj
t is updated by partially forgetting the existing memory and adding a new memory

content÷cj
t :

cj
t = f j

t cj
t ! 1 + i j

t ÷cj
t , (4)

where the new memory content is

÷cj
t = tanh (Wcx t + Ucht ! 1)j .

The extent to which the existing memory is forgotten is modulated by aforget gatef j
t , and the

degree to which the new memory content is added to the memory cell is modulated by aninput gate
i j
t . Gates are computed by

f j
t = ! (Wf x t + Uf ht ! 1 + Vf ct ! 1)j ,

i j
t = ! (Wi x t + Ui ht ! 1 + Vi ct ! 1)j .

Note thatVf andVi are diagonal matrices.

3

Unlike to the traditional recurrent unit which overwrites its content at each time-step (see Eq. (2)),
an LSTM unit is able to decide whether to keep the existing memory via the introduced gates.
Intuitively, if the LSTM unit detects an important feature from an input sequence at early stage, it
easily carries this information (the existence of the feature) over a long distance, hence, capturing
potential long-distance dependencies.

See Fig. 1 (a) for the graphical illustration.

3.2 Gated Recurrent Unit

A gated recurrent unit (GRU) was proposed by Cho et al. [2014] to make each recurrent unit to
adaptively capture dependencies of different time scales. Similarly to the LSTM unit, the GRU has
gating units that modulate the ßow of information inside the unit, however, without having a separate
memory cells.

The activationhj
t of the GRU at timet is a linear interpolation between the previous activationhj

t ! 1

and the candidate activation÷hj
t :

hj
t = (1 ! zj

t)hj
t ! 1 + zj

t
÷hj

t , (5)

where anupdate gatezj
t decides how much the unit updates its activation, or content. The update

gate is computed by

zj
t = ! (Wzx t + Uzht ! 1)j .

This procedure of taking a linear sum between the existing state and the newly computed state is
similar to the LSTM unit. The GRU, however, does not have any mechanism to control the degree
to which its state is exposed, but exposes the whole state each time.

The candidate activation÷hj
t is computed similarly to that of the traditional recurrent unit (see Eq. (2))

and as in [Bahdanau et al., 2014],

÷hj
t = tanh (W xt + U (r t " ht ! 1)) j ,

wherer t is a set of reset gates and" is an element-wise multiplication.1 When off (r j
t close to0),

the reset gate effectively makes the unit act as if it is reading the Þrst symbol of an input sequence,
allowing it to forgetthe previously computed state.

The reset gater j
t is computed similarly to the update gate:

r j
t = ! (Wr x t + Ur ht ! 1)j .

See Fig. 1 (b) for the graphical illustration of the GRU.

3.3 Discussion

It is easy to notice similarities between the LSTM unit and the GRU from Fig. 1.

The most prominent feature shared between these units is the additive component of their update
from t to t + 1 , which is lacking in the traditional recurrent unit. The traditional recurrent unit
always replaces the activation, or the content of a unit with a new value computed from the current
input and the previous hidden state. On the other hand, both LSTM unit and GRU keep the existing
content and add the new content on top of it (see Eqs. (4) and (5)).

1 Note that we use the reset gate in a slightly different way from the original GRU proposed in Cho et al.
[2014]. Originally, the candidate activation was computed by

÷hj
t = tanh (W x t + r t ! (Uht ! 1)) j ,

wherer j
t is a reset gate. We found in our preliminary experiments that both of these formulations performed

as well as each other.

4

Unlike to the traditional recurrent unit which overwrites its content at each time-step (see Eq. (2)),
an LSTM unit is able to decide whether to keep the existing memory via the introduced gates.
Intuitively, if the LSTM unit detects an important feature from an input sequence at early stage, it
easily carries this information (the existence of the feature) over a long distance, hence, capturing
potential long-distance dependencies.

See Fig. 1 (a) for the graphical illustration.

3.2 Gated Recurrent Unit

A gated recurrent unit (GRU) was proposed by Cho et al. [2014] to make each recurrent unit to
adaptively capture dependencies of different time scales. Similarly to the LSTM unit, the GRU has
gating units that modulate the ßow of information inside the unit, however, without having a separate
memory cells.

The activationhj
t of the GRU at timet is a linear interpolation between the previous activationh

j
t ! 1

and the candidate activation÷hj
t :

h

j
t = (1 ! z

j
t)hj

t ! 1 + z

j
t
÷
h

j
t , (5)

where anupdate gatezj
t decides how much the unit updates its activation, or content. The update

gate is computed by

z

j
t = ! (Wzx t + Uzht ! 1)j

.

This procedure of taking a linear sum between the existing state and the newly computed state is
similar to the LSTM unit. The GRU, however, does not have any mechanism to control the degree
to which its state is exposed, but exposes the whole state each time.

The candidate activation÷hj
t is computed similarly to that of the traditional recurrent unit (see Eq. (2))

and as in [Bahdanau et al., 2014],

÷
h

j
t = tanh (Wx t + U (r t " ht ! 1)) j

,

wherer t is a set of reset gates and" is an element-wise multiplication.1 When off (rj
t close to0),

the reset gate effectively makes the unit act as if it is reading the Þrst symbol of an input sequence,
allowing it to forgetthe previously computed state.

The reset gaterj
t is computed similarly to the update gate:

r

j
t = ! (Wr x t + Ur ht ! 1)j

.

See Fig. 1 (b) for the graphical illustration of the GRU.

3.3 Discussion

It is easy to notice similarities between the LSTM unit and the GRU from Fig. 1.

The most prominent feature shared between these units is the additive component of their update
from t to t + 1 , which is lacking in the traditional recurrent unit. The traditional recurrent unit
always replaces the activation, or the content of a unit with a new value computed from the current
input and the previous hidden state. On the other hand, both LSTM unit and GRU keep the existing
content and add the new content on top of it (see Eqs. (4) and (5)).

1 Note that we use the reset gate in a slightly different way from the original GRU proposed in Cho et al.
[2014]. Originally, the candidate activation was computed by

÷hj
t = tanh (W x t + r t ! (Uht ! 1)) j ,

wherer j
t is a reset gate. We found in our preliminary experiments that both of these formulations performed

as well as each other.

4

Update gate:

Reset gate:

Candidate activation:

Unlike to the traditional recurrent unit which overwrites its content at each time-step (see Eq. (2)),
an LSTM unit is able to decide whether to keep the existing memory via the introduced gates.
Intuitively, if the LSTM unit detects an important feature from an input sequence at early stage, it
easily carries this information (the existence of the feature) over a long distance, hence, capturing
potential long-distance dependencies.

See Fig. 1 (a) for the graphical illustration.

3.2 Gated Recurrent Unit

A gated recurrent unit (GRU) was proposed by Cho et al. [2014] to make each recurrent unit to
adaptively capture dependencies of different time scales. Similarly to the LSTM unit, the GRU has
gating units that modulate the ßow of information inside the unit, however, without having a separate
memory cells.

The activationhj
t of the GRU at timet is a linear interpolation between the previous activationhj

t ! 1

and the candidate activation÷hj
t :

hj
t = (1 ! zj

t)hj
t ! 1 + zj

t
÷hj

t , (5)

where anupdate gatezj
t decides how much the unit updates its activation, or content. The update

gate is computed by

zj
t = ! (Wzx t + Uzht ! 1)j .

This procedure of taking a linear sum between the existing state and the newly computed state is
similar to the LSTM unit. The GRU, however, does not have any mechanism to control the degree
to which its state is exposed, but exposes the whole state each time.

The candidate activation÷hj
t is computed similarly to that of the traditional recurrent unit (see Eq. (2))

and as in [Bahdanau et al., 2014],

÷hj
t = tanh (W xt + U (r t " ht ! 1)) j ,

wherer t is a set of reset gates and" is an element-wise multiplication.1 When off (r j
t close to0),

the reset gate effectively makes the unit act as if it is reading the Þrst symbol of an input sequence,
allowing it to forgetthe previously computed state.

The reset gater j
t is computed similarly to the update gate:

r j
t = ! (Wr x t + Ur ht ! 1)j .

See Fig. 1 (b) for the graphical illustration of the GRU.

3.3 Discussion

It is easy to notice similarities between the LSTM unit and the GRU from Fig. 1.

The most prominent feature shared between these units is the additive component of their update
from t to t + 1 , which is lacking in the traditional recurrent unit. The traditional recurrent unit
always replaces the activation, or the content of a unit with a new value computed from the current
input and the previous hidden state. On the other hand, both LSTM unit and GRU keep the existing
content and add the new content on top of it (see Eqs. (4) and (5)).

1 Note that we use the reset gate in a slightly different way from the original GRU proposed in Cho et al.
[2014]. Originally, the candidate activation was computed by

÷hj
t = tanh (W x t + r t ! (Uht ! 1)) j ,

wherer j
t is a reset gate. We found in our preliminary experiments that both of these formulations performed

as well as each other.

4

Unlike to the traditional recurrent unit which overwrites its content at each time-step (see Eq. (2)),
an LSTM unit is able to decide whether to keep the existing memory via the introduced gates.
Intuitively, if the LSTM unit detects an important feature from an input sequence at early stage, it
easily carries this information (the existence of the feature) over a long distance, hence, capturing
potential long-distance dependencies.

See Fig. 1 (a) for the graphical illustration.

3.2 Gated Recurrent Unit

A gated recurrent unit (GRU) was proposed by Cho et al. [2014] to make each recurrent unit to
adaptively capture dependencies of different time scales. Similarly to the LSTM unit, the GRU has
gating units that modulate the ßow of information inside the unit, however, without having a separate
memory cells.

The activationhj
t of the GRU at timet is a linear interpolation between the previous activationhj

t ! 1

and the candidate activation÷hj
t :

hj
t = (1 ! zj

t)hj
t ! 1 + zj

t
÷hj

t , (5)

where anupdate gatezj
t decides how much the unit updates its activation, or content. The update

gate is computed by

zj
t = ! (Wzx t + Uzht ! 1)j .

This procedure of taking a linear sum between the existing state and the newly computed state is
similar to the LSTM unit. The GRU, however, does not have any mechanism to control the degree
to which its state is exposed, but exposes the whole state each time.

The candidate activation÷hj
t is computed similarly to that of the traditional recurrent unit (see Eq. (2))

and as in [Bahdanau et al., 2014],

÷hj
t = tanh (W xt + U (r t " ht ! 1)) j ,

wherer t is a set of reset gates and" is an element-wise multiplication.1 When off (r j
t close to0),

the reset gate effectively makes the unit act as if it is reading the Þrst symbol of an input sequence,
allowing it to forgetthe previously computed state.

The reset gater j
t is computed similarly to the update gate:

r j
t = ! (Wr x t + Ur ht ! 1)j .

See Fig. 1 (b) for the graphical illustration of the GRU.

3.3 Discussion

It is easy to notice similarities between the LSTM unit and the GRU from Fig. 1.

The most prominent feature shared between these units is the additive component of their update
from t to t + 1 , which is lacking in the traditional recurrent unit. The traditional recurrent unit
always replaces the activation, or the content of a unit with a new value computed from the current
input and the previous hidden state. On the other hand, both LSTM unit and GRU keep the existing
content and add the new content on top of it (see Eqs. (4) and (5)).

1 Note that we use the reset gate in a slightly different way from the original GRU proposed in Cho et al.
[2014]. Originally, the candidate activation was computed by

÷hj
t = tanh (W x t + r t ! (Uht ! 1)) j ,

wherer j
t is a reset gate. We found in our preliminary experiments that both of these formulations performed

as well as each other.

4

Implementation
Torch code available (soon!)

Standard RNN

LSTMs

SCRNN

and other models..

GPU compatible

Open Problems

Encoding long-term memory into RNNs

Speed-up the RNN training

Control problems

Language understanding

